Organizations rely on machine learning engineers (MLEs) to operationalize ML, i.e., deploy and maintain ML pipelines in production. The process of operationalizing ML, or MLOps, consists of a continual loop of (i) data collection and labeling, (ii) experimentation to improve ML performance, (iii) evaluation throughout a multi-staged deployment process, and (iv) monitoring of performance drops in production. When considered together, these responsibilities seem staggering — how does anyone do MLOps, what are the unaddressed challenges, and what are the implications for tool builders?
We conducted semi-structured ethnographic interviews with 18 MLEs working across many applications, including chatbots, autonomous vehicles, and finance. Our interviews expose three variables that govern success for a production ML deployment: Velocity, Validation, and Versioning. We summarize common practices for successful ML experimentation, deployment, and sustaining production performance. Finally, we discuss interviewees’ pain points and anti-patterns, with implications for tool design.
— Lees op arxiv.org/abs/2209.09125v1

Categories: Data

0 Comments

Geef een antwoord

Avatar placeholder

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *